CONNECTORS

*Be careful during UART1 signals DSR, DTR, DCD and 100n C240.

DESIGN NOTE:
- LVDS0_PWM
- GND

DESIGN NOTE:
- UART1 signals DSR, DTR, DCD and 100n C240.

DESIGN NOTE:
- TRD0_N
- TRD1_P
- TRD1_N
- HDMI_HPD
- I2C4_SDA
- SD3_CLK
- SD3_WP
- UART1_DTR
- UART1_RTS

DESIGN NOTE:
- 10uF
- GND

DESIGN NOTE:
- 10uF
- 100n

DESIGN NOTE:
- 100n

DESIGN NOTE:
- PIC23901

DESIGN NOTE:
- I2C1 is used with AUDIO
- 1.0A per contact, 7.8A ground plane

DESIGN NOTE:
- Test function of BOOT MODE.

DESIGN NOTE:
- USB_OC

DESIGN NOTE:
- LVDS0_CLK_N
- LVDS0_TX1_P
- LVDS0_CABC

DESIGN NOTE:
- Pic24202
- Pic24201

DESIGN NOTE:
- Hardware design courses

Hardware design courses
http://www.horad.com/academy/

Date: 03.11.2013

DWG NO:
When swapping by the lanes on 16-bit memories, remember to move the DQM x.
DESIGN NOTE:
Close to pins +PCIE_VP, +PCIE_VPTX and +PCIE_VPH should be placed additional bigger capacitors. Near these pins are located 4u7 capacitors.
DESIGN NOTE: Glass printed on FR-4 and FEP film should be placed at a distance so that these pins are located out of reach.

+1V1_VDDSOC_CAP
+2V5
R23
R34
220n
C76
22mA
4u7
1k6
+LVDS_2V5
HDMI_RESREF
MCIMX6Q5EYM10AC
NVCC_LVDS2P5
L7
J1
MCIMX6Q5EYM10AC
HDMI_VPH
EIM_DATA18 / ECSPI1_MOSI / IPU1_DI0_PIN07 / IPU2_CSI1_DATA17 / IPU1_DI1_D0_CS / <GPIO3_IO18> / I2C3_SDA
EIM_DATA17 / ECSPI1_MISO / IPU1_DI0_PIN06 / IPU2_CSI1_PIXCLK / DCIC1_OUT / <GPIO3_IO17> / I2C3_SCL
ECSPI1_SS3 / ENET_CRS / HDMI_TX_DDC_SCL / KEY_COL3 / I2C2_SCL / <GPIO4_IO12> / SPDIF_IN
NAND_CE2_B / IPU1_SISG0 / ESAI_TX0 / EIM_CRE / CCM_CLKO2 / <GPIO6_IO15> / IPU2_SISG0

CPU - HDMI, LVDS

i.MX6Q - LVDS

i.MX6Q - HDMI

DESIGN NOTE: Include performance attributes for key

CONFIDENTIAL. Do not distribute.
DESIGN NOTE:
+5V_USB_VBUS should be enabled after +3V3 or after USB0_PWR_EN (USB1_PWR_EN).

DESIGN NOTE:
Resistor R88 fitted, if problem provided by baseboard.

DESIGN NOTE:
+5V_USB_VBUS must be high - DEVICE.
DESIGN NOTE:
All UART signal should be configured in software except UART1_RXD and UART1_TXD.

CPU - UART, AUDIO

UART

AUDIO

Hardware design courses
http://www.fedevel.com/academy/
CPU - JTAG, CONTROL

RESET

JTAG

CONTROL

DESIGN NOTE:
Device Design Guide policy not required
(DO CTP).

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.

DESIGN NOTE:
Power ON/ OFF control needs to be tested first.
CPU - POWER

DESIGN NOTE:
The VDDARM_CAP and VDDARM23_CAP rails should be split to the lowest power mode (preventing internal leakage) when using the i.MX6 Dual and the i.MX6 SoloLite processors. VDDARM_CAP should be split to all four processors by placing a Zero Ohm resistor between the VDDARM_CAP and VDDARM23_CAP rails (in place of the straight net connection).

LAYOUT NOTE:
It is recommended that the bulk and decoupling capacitors be placed on the VDD/PLL power rails to reduce noise and improve power integrity. The capacitors should be placed as close as possible to the processor.

PROTOTYPE:
A printed circuit board design for the CPU power distribution is shown in this diagram.

Hardware design course:
http://www.hedgelockacademy.com
MECHANICAL

TESTPOINT

MOUNTING HOLES

FIDUCIALS

PCB

FIRMWARE

LICENCE

ORIGINAL AUTHOR: FEDEVEL 2013
WEBSITE: http://www.iMX6Rex.com

This is a human-readable summary of the Legal Code (read full licence at:
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_GB).

You are free:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribution</td>
<td>You must give the original author credit.</td>
</tr>
<tr>
<td>Non-Commercial</td>
<td>You may not use this work for commercial purposes.</td>
</tr>
<tr>
<td>No Derivative Works</td>
<td>You may not alter, transform, or build upon this work.</td>
</tr>
</tbody>
</table>

With the understanding that:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiver</td>
<td>Any of the above conditions can be waived if you get permission from the copyright holder.</td>
</tr>
<tr>
<td>Public Domain</td>
<td>Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the licence.</td>
</tr>
</tbody>
</table>
| Other Rights | In no way are any of the following rights affected by the licence:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. |
| Notice | For any reuse or distribution, you must make clear to others the licence terms of this work. |
CPU - POWER SEQUENCING

OTHER POWERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Level</th>
<th>From</th>
<th>Used By</th>
</tr>
</thead>
<tbody>
<tr>
<td>+USB_VBUS</td>
<td>5V</td>
<td>connector</td>
<td>cpu</td>
</tr>
<tr>
<td>+DDR_VREF</td>
<td>0V75</td>
<td>+1V5_DDR</td>
<td>ref. for DDR memories, gen. with volt. divider</td>
</tr>
<tr>
<td>+1V2_VDD_ARM_CAP</td>
<td>1V2</td>
<td>iMX</td>
<td>cpu, core caps</td>
</tr>
<tr>
<td>+1V1_VDD_SOC_CAP</td>
<td>1V1</td>
<td>iMX</td>
<td>core caps, cpu-sata, cpu-pcie, cpu-hdmi</td>
</tr>
</tbody>
</table>

POWER UP SEQUENCE

<table>
<thead>
<tr>
<th>NAME</th>
<th>LEVEL</th>
<th>USED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>POK_{3V3}</td>
<td>+1V2_ETH</td>
<td>1V2, ethernet phy</td>
</tr>
<tr>
<td>POK_{2V5}</td>
<td>+3V3</td>
<td>3V3, cpu, pull up</td>
</tr>
<tr>
<td>POK_{1V5}</td>
<td>+2V5</td>
<td>2V5, cpu, ethernet phy</td>
</tr>
<tr>
<td>POK_{1V375}</td>
<td>+1V5_DDR</td>
<td>1V5, cpu, memory</td>
</tr>
<tr>
<td>EN_{1V375}</td>
<td>+1V375</td>
<td>1V375, cpu, core voltages</td>
</tr>
<tr>
<td>+VIN</td>
<td>+3V0_ALWAYS</td>
<td>3V0, cpu, supervisor, pull up</td>
</tr>
<tr>
<td></td>
<td>+VIN</td>
<td>4.75V-25V, switching power supplies</td>
</tr>
</tbody>
</table>

TIME

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware design courses
http://www.fedevel.com/academy/
DOC: REVISION HISTORY

01-AUG-2013 Some HDMI and Ethernet signals swapped on J1

19-AUG-2013 Signals for SPI FLASH has been moved to CSPI3

 Added additional capacitors to +2V5 and +1V1_VDDSOC_CAP

21-AUG-2013 Added resistor from CPU_XTALO to GND

 I2C3_SDA and I2C3_SCL has been moved to another CPU pins

22-AUG-2013 Always powered voltage change level to 3V0 - supply voltage +3V0_ALWAYS

 Added bead to connect together +1V2_ETH and +1V375 (Only for testing purpose).

23-AUG-2013 Added resistor to connect SLEEP pin of TPS62175DQCT to +3V0_ALWAYS.

27-AUG-2013 On connector J1 added BOOT_MODE signal to select boot source.
TEMPLATE NOTES

Set Project Parameters

1) Go to Project -> Project Options -> Parameters
2) Set Company, Project and Version Revision

Mark Not Fitted Components as NF

Net Class Example

Differential signal example

TITLE Examples (You can change the color to reflect your company color)

PAGE TITLE

Peripheral / Group of component title

Smaller Title

Schematic Status Explanation

DRAFT - Very early stage of schematic, ignore details.
PRELIMINARY - Close to final schematic.
CHECKED - There should not be any mistakes. Tell the engineer if you find one.
RELEASED - A board with this schematic has been sent to production.

Hardware design courses
http://www.fedevel.com/academy/
Assembly BOTTOM of iMX6 Rex Module V1II1
Prototype